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ABSTRACT 

The influence of conducting flaps on the reflection coefficient of 

The backscatter f rom the guide 
a ground-plane-mounted TEol mode parallel-plate waveguide illumi- 
nating a reflecting sheet is analyzed. 
i s  determined by use  of wedge diffraction and surface integration tech - 
niques. The reflection coefficient of the guide is then obtained through 
an i terative procedure that describes the multiple interactions between 
the guide and reflector as bouncing cylindrical waves. 
flap length produces a significant reduction in the backscatter f rom the 
guide and consequently a significant reduction in the oscillations of the 
reflection coefficient. 

The optimum 
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THE INFLUENCE O F  CONDUCTING FLAPS ON 

PLATE WAVEGUIDE ILLUMINATING A CONDUCTING SHEET 
THE REFLECTION COEFFICIENT OF A PARALLEL- 

I. INTRODUCTION 

Recent advances in  space exploration has given impetus to  the 
need fo r  bet ter  understanding of spacecraft  antenna problems. 
important phenomenon is communications blackout encountered during 
reent ry  due to  p lasma formation. In o rde r  to  overcome this problem, 
a knowledge of the character is t ics  of the plasma formed around the space-  
c ra f t  i s  necessary .  A widely used technique f o r  plasma diagnostics is a 
flight measurement  of antenna impedances o r  r e f l e c t i ~ n  coefficients . 
Improved designs a r e  being sought f o r  ref lectometer  antennas useful 
f o r  this purpose.  
havior of reflectometer antennas is to  analyze the aperture  reflection 
coefficient of a waveguide illuminating a conducting sheet which approxi- 
ma tes  a cutoff plasma.  
and the ground-plane-mounted waveguide a r e  s imi la r  to  those which 
occur  between a cutoff plasma and the vehicle skin around the reflecto- 
m e t e r  antenna. 
the performance of flush mounted reflectometer antennas. 

An 

One approach being taken to gain insight into the be- 

The interactions between the conducting sheet  

Consequently this type of analysis gives a measu re  of 

A. Statement of the Problem 

The problem being t rea ted  in this repor t  is the analysis of the 
ref lect ion coefficient of a ground-plane-mounted TEel mode paral le l -  
plate waveguide with flaps attached a t  the aperture  and illuminating a 
conducting shee t .  The geometry of the problem is as shown in F ig .  1 .  

A s imi l a r  problem which has been previously treated”’ is the 
TEM mode ground-plane-mounted guide (without flaps) illuminating a 
conducting sheet .  
f r o m  the conducting sheet was given in t e r m s  of successive contributions 
o r  bounces that descr ibe the interacting waves between the waveguide 
and the re f lec tor .  
into component cylindrical waves. 
obtained by summing these i terative contributions. F o r  the TEM guide 
without flaps,  the reflection coefficients when plotted as a function of d, 
the ref lector  spacing, exhibited strong oscil latory behavior. 
f o r  values of d equal to an integral multiple of k/2, complete reflection, 
o r  a unity reflection coefficient, w a s  observed 

By using the wedge diffraction method the reflection 

Each of these bounce waves was  subsequently resolved 
The reflection coefficient was then 

In fact, 
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Fig.  1 .  TEol mode parallel-plate waveguide with 
flaps illuminating a conducting sheet .  

In order to  accurately determine the distance d of a perfectly 
reflecting surface from an antenna in a ground plane, however, it is 
desirable to have the reflection magnitude from the antenna be a mono- 
tone function of d.  The ground plane mounted TEM guide studied in 
Ref. 2 is therefore unsuitable for reflectometer applications without 
fur ther  modifications. 

The problem considered in  this. report  is motivated by the work of 
R. Lentz' where he experimentally observed that the reflected power 
received by an absorber-backed pyramidal horn illuminating a reflecting 
sheet may be made a monotone function of the distance to  the reflector 
by the attachment of conducting flaps t o  the E-plane edges of the horn. 
However, the important question remaining unanswered is: can a ground 
plane mounted aperture  antenna achieve this monotone reception, since 
the ground plane is the pr imary  sca t t e re r?  
multiple interactions can occur between the ground plane and ref lector  
so  as to  yield oscillatory resul ts .  The purpose of this investigation is 
then to examine the effect of conducting flaps in reducing these multiple 
interactions. 

F o r  this case  significant 

I 

The method of solution for the f lap guide problem is  outlined below. 
First, the backscatter of the guide s t ruc ture  with flaps is determined 
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for  plane wave incidence by applications of wedge diffraction and surface 
integration techniques. 
at  a constant distance away from the guide aper ture  fo r  different flap 
lengths ( f ) .  The optimum flap length is that which yields the deepest 
null in the sca t te red  field since this means the lowest re turn  from the 
guide s t ruc ture  and hence lowest multiple interactions between the guide 
and ref lector .  Secondly, the scat tered field is resolved by superposition 
to be the sum of two equivalent line source fields plus the reflected geo- 
me t r i ca l  optics field. Finally, the reflection coefficient is analyzed by 
a multiple bounce procedure s imi la r  to that employed in  Ref. 2 .  

The scat tered field is then observed on a plane 

B. Background 

Following the method in Refs.  4 and 5, the incident field in a 
TEol mode para l le l  plate waveguide may be expressed in t e r m s  of plane 
- - -^-_^- ~a~~~ (as sbzv.m In F i g -  2 )  where the angle of propagation i s  given by 

The incident modal power flow is  

(2) Po = Za Yo cos A, 

where 

Y 0 = W o  , 

and the associated modal voltage is  

(3)  cos A, 

where yg i s  the guide admittance f o r  the TEol mode. F o r  this polar i -  
zation the relationship between the electr ic  field E, r ay  R, diffraction 
coefficient D, and modal voltage V is given by 

- j k r  e - jk r  t srI4 e - 
- j (kr  t r / 4 )  

- D -  = V  
E = R ~  dmz 6 G (4) 

3 
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F i g .  2. TEol mode in a parallel-plate waveguide. 
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The diffraction at  the aperture  of the parallel-plate waveguide 
m a y  be t rea ted  as in Ref. 4 by summing the singxe and double diffraction 
contributions. The guide s t ructure  .in this analysis may be approximated 
by a symmetr ic  half-plane guide when considering radiation in the on- 
axis region. The singly diffracted r ays  f rom edges 1 and 2 a r e  thus given 
respectively by 

and 

( 6 )  

where  nl = n2 = 2 . 0 .  

The r ay  f r o m  edge 1 (o r  2 )  which illuminates edge 2 ( o r  1 )  is given by 

The doubly diffracted rays f rom the two edges a r e  given by 
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and 

where V g ( r ,  +, n) is the wedge diffraction function employed in previous 
analyses.  Calculations have shown6 that the field radiated by the guide 
near  the on-axis region may be approximated by a line source field 
given by 

where 

The equivalent line source with modal voltage V1 which approximates 
the guide radiation i s  then given by 

A primary resul t  used in this analysis i s  the response of the 
TEol mode parallel-plate waveguide to an incident cylindrical wave. 
This i s  given by the line source to waveguide coupling relationship 
presented in  Ref. 5 as 

where V is the modal voltage induced in  the guide, Ei is the incident 
field at the guide aperture  center ,  and DT(8) is the diffraction coeffici- 
ent of the guide given through Eq. ( 9 ) .  
a form useful for  computing the reflection coefficient r ,  we find 

Rewriting this relationship in 
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I .  

and the constant C i s  given in t e r m s  of the on-axis r a y  RT(B = 0) as 

where Vi is the modal voltage of the line source  generating the incident 
field Ei given by 

I 

Ei = vi e - jkr  f j r/4 

rn ( 1 3 )  I 

11. BACKSCATTERING O F  GUIDE -.*.. m-1 

W l l H  

In this section the backscattering propert ies  of the guide s t ruc ture  
shown in Fig.  1 are investigated as a function of flap length. 
a unit amplitude plane wave incident on the guide as shown in F i g .  3,  
the sca t te red  field m a y  be analyzed by a combination of wedge diffraction 
and surface integration techniques. The sca t te red  field is then observed 
on a plane normal  to the guide axis and located at  a distance d '  away 
f rom the guide aperture .  
in  the total  sca t te red  field may then be considered optimal for  minimi- 
zing multiple interactions between the guide and the ref lector .  

Assuming 

The flap length which gives the deepest null 

The sca t te red  field for  this problem m a y  be thought of as being 
composed of the following components: 
tions or the diffracted rays  f rom the flap edges which a r e  not influenced 
by the presence of the ground plane; (2)  reflected diffraction contributions 
01- the diffracted rays  f r o m  the flaps which reflect  off the ground plane 
and contribute to  the total  scattered field, and ( 3 )  reflected geometr ical  
optics contributions f r o m  the ground plane. Detailed analyses of these 
components a r e  given in the following sections.  

(1) d i rec t  diffraction contribu- 

A. Direct Diffraction Contributions 

The analysis of the direct  diffraction contributions from the flap 
These edges is analogous to  that employed in  previous problems .IJ7> 

contributions m a y  be obtained by simply summing the single and double 
diffraction contributions f rom the flap edges as shown in Fig.  4. 

7 
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Fig. 4 .  Direct diffraction contributions to  the 
scat tered field f rom the flap edges.  
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The singly diffracted field at the observation point P(x, y) f rom 
edges 1 and 2 are given, respectively, by 

rl = 

and 

a1 = tan'l (y/d') 

and 

where 

r 2  = dd" t (y t a)2 

and 

The single diffraction rays which originate at one edge and illumi- 
nate the opposite edge a r e  given by 

(17)  R1(-jl) = R ~ G  1 1 1 

n IT 90" IT 270' 
cos - - cos - n n n n 

1 
n 

(1) = - sin - 

Hence the doubly diffracted field f r o m  edges 1 and 2 a r e  given, 
respectively,  by 

9 



and 

i 

The total  d i r e c t  diffraction contribution to the sca t te red  field may then 
be expressed as  

B . Reflected Diffraction Contributions 

The diffracted rays f rom the edges of the flaps which reflect off 
the ground plane and thus contribute to the total sca t te red  field may be 
analyzed to a f i r s t  o rde r  approximation by the same ray tracing techni- 
que employed in  the previous section. If this method were  applied the 
geometry and diffraction components involved would be as shown in F ig .  5 
where ERD represents  the diffracted wave which emanates f rom edge 1, 
is reflected by the ground plane, and contributes to  the scat tered field 
at  P(x,  y).  A s imi la r  process ,  of course,  resu l t s  from edge 2 f o r  
y < -a .  Preliminary calculations have shown that this  technique would 
be adequate i f  one were  interested only in finding the scat tered field f o r  
Iyl > > 0 .  However, for  the regions of in te res t  in the problem of this 
report  further considerations must  be given. 

The reflected diffraction wave, ERD, can be seen in Fig. 5 to  
actually reilluminate edge 1 as  j3 - 0. The subsequent diffracted wave 

10 
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F i g .  5. Ray t racing technique fo r  finding the reflected 
diffraction contributions f rom the flaps.  

which resu l t s  cannot be adequately descr ibed by conventional wedge 
diffraction techniques, which inherently assumes cylindrical  wave 
incidence, because the magnitude of ERD rapidly approaches a sha rp  
peak with a s teep  slope near  the surface of the flap. Consequently, a 
sur face  integration technique is applied to  include the effects of this 
nonuniform wave. 

Basically,  the surface integration technique t r ea t s  multiple inter-  
actions which occur  in diffraction problems by integrating the diffracted 
fields of an interaction wave of a specific o rde r  over  a sur face ,  to  obtain 
what corresponds to  the subsequent o rde r  wedge-diffracted wave. This 
method has  been successfully used in  Refs. 9 and 10 and have been shown 
to provide higher accuracies  than the wedge diffraction method while p re -  
cluding the limitations of nonuniform wave interactions 

Formulating the analysis of the reflected diffraction components 
by the sur face  integration technique, the pertinent parameters  are as 
shown in F i g .  6 .  
aper ture  plane. 
s u r f a c e  of integration will be determined. 

The surface of integration is chosen to  Pe at the guide 
First, the reflected diffraction fields,  ERD, on the 

Then the reflected diffraction 
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!. 

where 

i 

contributions, ERD, at the observation plane w i l l  be  determined using 
Green 's  Second Identity f o r  planar surfaces" given by 

Go(kr) = - Hi2) (k r )  
4 

with 

A A A  
' = p - p '  . 

Noting that r = Gx-x'f t (y-yI)L" Eq. (21) may be simplified by the 
following relationship 

- 1 ( 2 )  kx - Hi (k r )  - 4J r 
- 

I 

where H1 ( 2 )  (k r )  is the Hankel function of the second kind of first o r d e r .  

The reflected diffraction field on the surface of integration S is given 
by summing the single and double diffraction contributions. 
only edge 1 will contribute and f o r  yl < -a  only edge 2 will contribute 
while for  0 > yl > -a  the reflected diffraction field is zero  on S .  
be recognized that due to the symmetry about the guide axis, identical 
f ie ld  distributions exist  fo r  y '  > U and for  y '  < -a,  thus only the upper 
half  of S needs to be t reated.  The singly diffracted field f rom edge 1 
is thus given by 

F o r  yl > 0 

It may  

13 



where the minus sign results f rom the reflection from the ground plane 
and the geometrical quantities a r e  

p = tan-'($) , 

and 

The doubly diffracted field from- edge 1 i s  similarly given by - 

8 2 7 0 ° - p ,  2.0) - VB(& , 4 5 O 0 - P ,  2 . 0  I I 
1 

p ' t a  

The total reflected diffraction field on S f o r  y '  > 0 is thus given by 

The symmetry  property of the field on S will now be invoked to  
simplify Eq. ( 2 1 ) .  Let 

where 

EI(x, y) = field at P(x,  y)  by integration over  the upper 
half of S 

and 

14 
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I 

EII(x, y)  = field at  P(x, y) by integration over the lower half 
of s 

Then, by symmetry ,  

Rewriting Eq. (21),  the total  reflected diffract 
sca t te red  field at  P(Y, y )  is thus given by 

on contribution to  the 

with the integrand given through Eqs.  ( 2 2 )  and (25).  

It may  be noted in passing that the d i rec t  diffraction contributions 
obtained by ray techniques in Section A may also be analyzed by surface 
integration techniques. However, when interaction waves a r e  uniform 
to a good approximation, this more  tedious technique is not necessary 
and, in fact ,  can be shown to yield values directly corresponding to the 
r ay  technique .9 

C . Reflected Geometrical Optics Contributions 

Analogous to  the reflected diffraction contribution in the previous 
section, the reflected geometrical optics component may be seen to  a l so  
reil luminate the f lap  edges.  Conventional wedge diffraction theory again 
cannot be applied directly since this Component is actually discontinuous 
along the sur face  of the flap. 
with superposit ion is therefore applied to  analyze this component. 

Surface integration techniques together 

15 



It may be noted here  that both the reflected geometrical optics 
field, ERG, and the reflected diffracted field, ERD, a r e  discontinuous 
at  the surface of the flaps. 
ditions for this polarization their  sum, i . e . ,  ERD -t ERG, mus t  be 
continuous and approach zero  along the flap surface.  

But in o rde r  to  satisfy the boundary con- 

The geometry involved f o r  ERG is the same as that in Fig.  6 
with the surface of integration S at  the aperture  plane. 
geometrical optics field on S is given by 

The reflected 

- J k ( 2 f )  f o r  yl > 0 o r  yl < - a  , 

for 0 ,  y') - a  
( 2 9 )  E k ~ ( y ' )  = [l 

I 
I 
I 
I 

I 
I 
I 
I 

I IEbl  

I 

where the minus si  n a r i s e s  f rom the reflection by the ground plane. 
By superposition ERG may be resolved as shown in  Fig.  7 into two 
components: Eb, o r  the reflected plane wave from a ground plane 
without an aperture ,  and Eks, the negative of the reflection from a 
thick wall or  s t r i p  (reflected geometrical  optics s t r i p ) .  
these components on S a r e  given by 

F 

The values of 

THICK 
WALL 

- - - 

EASl 
FIELD 

E'c 
FIELD 
PLOT PLOT 

GUIDE /1 4 

9 

\ 3 
I 

GROUNDA 
PLANE 2 

1 

1 
- - 

1 
E'RG A 

9 FIELD 
PLOT 

I 

I 

F ig .  7 . Applications of superposition to  the reflected geometrical 
optics components from the guide. 
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otherwise I" 

Applying Eq. (21)  to these components and integrating over S, 
it is seen that the plane wave component EG, will still remain a plane 
wave at the observation plane located a distance d '  away. The contri- 
butions of the reflected geometrical optics s t r ip ,  Eks, is seen to be 
given by 

( 3 3 )  

kd - jk( 2 f )  0 

2 j  
e 

- - 1 H1(')(kr) dy' . 
-a  

Thus the total contribution from the reflected geometrical  optics com- 
ponent at P(x, y) is given by 

where  

(35) 
-jk[2f tx] 

E ~ ( x , y )  = - e 
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D. Results 

From Eqs. (20), (28), and (34), the total  scattered field on the 
observation plane may be determined by 

ETS = ED * ERD + ERG 

where 

ETS = total scattered field, 

ED = direct  diffraction contribution from the f laps ,  

ERD = reflected diffraction contribution from the f laps ,  

ERG = reflected geometrical optics component from 
the guide, 

EG = reflected plane wave from a ground plane 
without an aperture ,  and 

ERS = reflected geometrical optics strip or  the negative 
of the reflection from a conducting wall. 

A computer program in  For t r an  IV presented in  Appendix I has 
been written to aid in  the calculation of the scat tered field. 
thus obtained a r e  shown in F igs .  8 through 12 as a function of flap length 
for  various values of f and d ' .  
scat tered field on an observation plane located 3.0X from the guide 
aperture  for various flap lengths shor te r  than U . 6 X  . It can be seen  
that f = U.3205h yields the deepest dip in 1 ETSI . Figure 9 gives the 
s a m e  data for f l e s s  than one wavelength while Fig.  10 supplies the 
cases  for which f > 1 . O X  . It can be seen  from these resul ts  that optimum 
flap lengths, which give the deepest null, occur  approximately once every 
h / 2 ,  an observation in line with physical intuition. 
f o r  relatively short  flaps a r e  thus concluded to  be f = 0.3205X, 0.8205X 
and 1.3205X. 

The resul ts  

Figure 8 presents  the magnitude of the 

These optimum lengths 

Figure 11 presents l E ~ s 1  f o r  f = 0.3205A observed at dl = 2 . o X ,  
From this result  the dip obtained by the attachment 5 . O X  , and 10. OX . 

of the f laps  onto the guide aperture  can thus be  concluded to  diminish 
as the observation distance d '  is increased.  At d '  = u,, of course,  the 
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presence of the aper ture  should have rio effect on the sca t te red  field 
which then becomes the reflected plane wave from a ground plane. 

The phase of the sca t te red  field is exemplified by the cases  for  
which f = 0.32051, and 0.571, and d '  = 3 .0  as presented in F ig .  12 

E. Eauivalent Line Source Representations 

The sca t te red  field f rom the guide due to an incident plane wave 
may be seen both theoretically and numerically to be resolvable into 
cylindrical component waves . 
sections can be t reated as follows: 

The components obtained in the previous 

(1)  EG, the reflected plane wave from a ground plane without 
an aperture ,  can be identified as  the geometr ical  optics reflection of 
the incident field by the ground plane 

( 2 )  ED, the d i rec t  diffraction contribution from the flaps,  
actually seems  to eminate f rom edges 1 and 2 and hence can be r e p r e -  
sented by an equivalent line source,  VD, located at the guide aper ture  
center .  

(3) ERD t ERS, the sum of the reflected diffraction contribution 
from the flaps and the reflected georr.etrica1 optics s t r i p  component, 
as seen by image theory,  can be represented by an equivalent line source ,  
VR located at a distance Z f  behind the guide aper ture .  The modal  voltages 
of these equivalent sources  a r e  then obtained f rom Eq. (4 )  as 

(37 1 

and 

VD = eJkd'  ED(d ' ,  - a /2 ) ,  

Numerical verification of these equivalent line source  representa-  
tions for the sca t te red  field i s  given in Tables  I and I1 f o r  the cases  in 
which a =  0.76iX, f = 0.32051,  and d '  = 3 . 0 1  and 10.01. 
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It m a y  be noted that the equivalent line source  modal  voltages, 
VR and VD, depend only on the amplitude of the incident field (unity 
amplitude plane wave assumed incident for E q s .  (37) and (38)) and is 
independent of the observation distance d ' .  
in the reflection coefficient analysis discussed in the next section, 
where the same  property is assumed for  cylindrical  wave incidence. 
The scat tered field components associated with the presence of the 
aperture,  i.e., those representable by the equivalent line sources  
VR and VD, may  be thus expressed in general  as 

This property will be useful 

and 

where Ei may  be an incident plane wave of a rb i t r a ry  amplitude and ro 
is the observation distance.  
contribution and ER is the equivalent reflected contribution from the 
aperture .  
cients of a par t icular  guide s t ruc ture  with their  values obtainable 
through Eqs. (39) and (40) by making the substitutions Ei = 1 eJo,  
ro = d ' ,  and the values of ED and ER as exemplied in Tables I o r  11. 
The cases  to be considered in the next section are:  (1) f = 0.3205X, 
a = 0.7611; KD = 0.254/108.2" ; KR = 1 . 1 6 5 / 2 0 . 4 "  ; and (2)  f = 0.57X9 
a =  0.7611; K D  = U.254 / & &  ; KR = 1.337 / 17.7".  

ED is  the equivalent d i rec t  diffraction 

KR and KD may  be regarded as constant scat ter ing coeffi- 

111. REFLECTION COEFFICIENT ANALYSIS 

. In this section the reflection coefficient of the ground-plane-mounted 
TEoi mode paral le l  plate waveguide with conducting flaps attached to the 
aperture and illuminating a conducting shee t  as shown in Fig.  1 is analyzed 
in a manner  similar to that employed in Ref .  2 .  
method the reflection coefficient of the waveguide is the superposit ion of 
the f ree  space  reflection coefficient, rs, and the reflection coefficient 
caused by the presence of the conducting sheet ,  rp . 
reflection coefficient fo r  this guide s t ruc tu re  may  be approximated by 
the solution for  the thin walled case  given in Ref. 5.  
general  is quite small and in prac t ice  can be matched out;* therefore ,  

By the wedge diffraction 

The f r e e  space  

However, rs in 
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it w i l l  not be included in the subsequent discussions.  The reflection due 
to the sheet  i s  analyzed in t e r m s  of successive contributions o r  bounces 
which descr ibe the interaction of the fields between the guide and the 
sheet .  

Formulating the reflection from the sheet in t e r m s  of successive 
bounces, the first bounce wave is the f r ee  space radiation f r o m  the 
waveguide, Eq. ( 9 ) ,  which reflects f rom the sheet back onto the waveguide. 
The first bounce wave then sca t te rs  f rom the guide producing a second 
bounce wave which propagates toward the reflecting sheet .  
bounce wave in turn  reflects f rom the sheet  back onto the waveguide 
giving r i s e  to  a third bounce wave, and s o  on to higher o r d e r  bounces. 
Each bounce produces a contribution to the reflected TEot mode in  the 
wave guide . 

The second 

A. First Bounce 

As stated by Eq. ( l o ) ,  calculations show that in the region of the 
projected guide c r o s s  section the f ree  space wave radiated from the 
guide may be represented by an isotropic cylindrical  wave f rom a line 
source  located at the center  of the guide aperture .  This and subsequent 

F i g .  14. The reflection coefficient of a TEol mode ground 
plane mounted guide with aperture  flaps i l lumi- 
nating a conducting sheet.  
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F i g .  15. Equivalent line source  locations for  the n;ultiple 
bounce d iagram.  
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approximations in this report  a r e  valid provided the observation distances 
a r e  sufiiciently removed f rom the aper ture .  
would be to  keep the conducting sheet distance d always grea te r  than a, 
the guide width, for  a < X . 

In general, a rule of thumb 

By image theory the equivalent line source  representing the first 
bounce wave m a y  thus be seen from Fig .  15a to  be located a t  a distance 
2d f r o m  the guide aperture  and with modal voltage Vi given by 

where RT(e= 0 )  is the on axis ray  from Eq. ( 9 ) .  
f r o m  the reflection by the conducting shee t .  
froiii the first b o u ~ c e  ecplvalent line source  is then given by 

The minus sign a r i s e s  
The field incident on the guide 

Using the line source to waveguide coupling expression given in Eq. (12), 
the first bounce reflection coefficient is given by 

I 

-jk(2d) e 

m = c v1 

B. Second Bounce 

The first bounce equivalent line source field sca t t e r s  f rom the 
guide producing a second bounce wave. It was seen in Section I1 that 
the sca t te red  field f rom the guide fo r  plane wave incidence may  be resolved 
into the geornetrical optics component and two cylindrical component 
waves associated with the presence of the aperture .  
ponents of the scat tered field resulting from an incident cylindrical 
wave,  however, depends only on the value of the incident field and is 
independent of the source location provided the source is sufficiently 

The aper ture  com- 
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removed f rom the guide. 
the aperture  component of the scat tered wave is, therefore ,  the s a m e  as  
that for  plane wave incidence with the plane wave field equal to  the incident 
field of the cylindrical wave at the waveguide aper ture .  

F o r  the case  of cylindrical wave incidence, 

The geometrical  optics component of the second bounce wave 
reflects f r o m  the sheet back onto the waveguide such that it may be 
represented by the line source  VI located at a distance [ 2d t (2d t 2 f ) ]  
f rom the guide aperture ,  as shown in F ig .  15b. The aper ture  components 
of the second bounce wave reflect  onto the waveguide as descr ibed by the 
line sources  Vt and V3 in F ig .  15b The values of V2 and V3 a r e  ob- 
tained by equating the radiated fields with those of the aper ture  components 
in Eqs .  ( 3 9 )  and (40) .  Thus 

- j k r o t j  ~ r / 4  - jkr, e e = - Ei K D  J 

G- 

where the minus s gn again resul ts  f rom the reflection off the conducting 
sheet  and E’ is the incident field of the illuminating line source  Vi at 
the guide aper ture  given by Eq. (42) .  
a r e  given, respectively,  by 

Hence the value of Vt and V3 

-jk(2d) e ( 4 5 4  V2 = - VI KR 9 

and 

-jk(Zd) 

The corresponding second bounce reflection coefficient is then given by 
the modal voltage induced by Vi, V2, and V3 as  shown in Fig .  15b 
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I 

- jk( 2d) e - jk( 2dt2f) e 

4- vz m v3 6 d  

C . Multiple Bounces 

The generation of the third bounce is similar to the generation of 
the second bounce with the line source locations as shown in Fig.  15c 
and modal voltages given by 

- jk( 2d) e -jk(2dt2f) 

(47) 2dt  ( 2  dt2f j  + v 2  d m >  + vs ai- 
e 2dt(2dt2f) l  

-jk[ 2dt(2d+2f)] - jk( 2d+2f) -jk(2d) 
e e 
m + v 3  ai- f v2 

The third bounce reflection coefficient contribution i s  given by 

-jk[2(2dt2f)] e -jk[ 2dt2(2d+2f)] 

2dt2(2d+Zf) dqzzz) f v2 (49) 

-jk[ 2dt2fl  e - jk[ 2dt(2df2f)J e 
c d t (  2 d+2f) + v 4  IIZd+Zf f v3 

1 - jk( 2d)  e 

m- i- v5 

Generalizing, the n-th bounce wave is given by (2n-1) cylindrical 
wave components with sources  Vi  at [2dt(n- l ) (2dt2f)]  a Vz at  [(n-1) 
(2dt2f)] ,  v3 at [2dt(n-2)(2d+2f)], V4 at ((n-2)(2d+2f)], - - - - -  V( 2n-2) at 
[ZdSZf], and V(tn-1) a t  [2d] . The sources  associated with this bounce 
are given by 

3 5  



and 

n- 2 - - jk[(n-m- 1)(2d+2f)] 

(n-m-  1)(2d+2f) m= 1 

The n-th bounce contribution to the reflection coefficient is thus given by 

n 
e -jk[2dt(n-m)(2dtZf)] 

2dt2f)  

1 n -,1 e -jk[ (n-m)(2dt2f)]  ' V'2m) 
d(n-m)(2dt2f )  m=  1 

The total reflection coefficient due to the reflecting sheet  o r  plate 
is given by 

36 



I .  

D. Results 

I 

I 

The total reflection coefficient, rp due to the conducting sheet,  
as given in Eq.  (53) , was calculated as a function of the reflector spacing 
d fo r  two different  flap lengths with the aid of the For t r an  IV computer 
program presented in  Appendix IT. The f lap  lengths chosen were  0.32051, 
an optimum length determined from the scat ter ing program to give the 
deepest null, and 0.57h, a non-optimal value. F o r  both cases ,  a guide 
width of 0.7611 was used.  The r e s u l t s  thus obtained a r e  as  presented 
in F igs .  16 through 18 with the inclusions of u p  to  300 bounces. 

F igure  16 compares  the magnitude of rp f o r  the two flap lengths 
along with the reflection coefficient from the first bounce wave I'l . 
F o r  both cases ,  the behavior of 1 rPl is quite like that observed in Ref. 2 
f o r  a TEM mode ground plane mounted guide (without flaps).  
seen t e  escillate about rl with a period of X/2 in d. At values of d fo r  
which f t d  = multiples of X / 2 ,  the reflection coefficient is seen to rise 
to  a s h a r p  peak. This is exactly analogous to  the resonance behavior 
observed in Ref. 2 for  cavity spacings equal t o  nX / 2 ,  where unity magni- 
tude reflection coefficients were observed. F r o m  the basic nature of 
the problern of a TEol ground-plane-mounted guide without flaps illu- 
minating a conducting sheet,  it is  expected that the reflection coefficient 
fo r  this  problem will have the same fundamental behavior near  cr i t ical  
values of ref lector  spacing d = n1: 2 as that fo r  the TEM mode. 
is expected that complete reflection will occur  a t  d =  nX/2 for  the TEol 
mode problem without flaps. 
complete reflection as can be seen from the resul ts  in Fig. 16. 
fact ,  the optimum flap length of 0.32051 can be seen  to  yield smaller 
oscil lations in 1 r I than that f rom f = U.571 , with a significant reduction P 
in  the peak values.  
i nc reases ,  an observation in line with that observed in Ref 2 .  

II',I is 

Thus i t  

The piesence of the flaps eliminates 
In 

F o r  both cases ,  the peaks remain constant as d 

The phase of rp f o r  the two flap lengths is shown in Fig.  17 with 
the phase of I ' l .  
rp f o r  the f = 0.32051 case with large values of d .  
value is observed in the sha rp  peak of lrPl at d = 1U.17951 as was ob- 
s e r v e d  at sma l l e r  values of d .  
not diminish i r r ega rd le s s  of the size of d due to the idealized geometry 
assumed,  namely, infinite ground planes and conducting sheets.  

Figures  18a and 18b give the magnitude and phase of 
The same maximum 

It is believed that the peak values will 

F r o m  the data thus obtained, it can be seen that the presence of 
the flaps causes  a considerable reduction in the amplitude of the oscil-  
la t ions in  I rpl . F r o m  the unity reflection case  observed fo r  the guide 
without f laps ,  the new structure  i s  seen to offer  lower peaks, e s  ecially 
at optimum flap lengths. Even though the monotone curve of IrPT vs d, 
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Fig .  17. Phase of Fp.  

I 

suitable for  reflectometer antennas, was not obtained, this analysis 
nevertheless  quantitatively predicts the bes t  resul t  that can be obtained 
with simple flaps.  

IV. CONCLUSIONS 

The influence of conducting flaps on the reflection coefficient of 
a ground-plane mounted TEcr mode parallel-plate waveguide illuminating 
a conducting sheet  has  been analyzed. The backscat ter  f rom the guide 
s t r u c t u r e  was obtained by applications of wedge diffraction and surface 
integration techniques. The reflection coefficient was then obtained through 
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Phase of rp for l a r g e r  d .  

an iterative multiple bounce procedure that descr ibes  the intera.ctions 
between the guide and the ref lector .  

This analysis was motivated by the need to  improve the design of 
reflectometer antennas which a r e  used in p lasma diagnostic measurements .  
Previous analyses and measurements  have shown that a reflecting su r face  
in front of the antenna will  usually produce l a rge  interactions between the 
surface and the antenna; this resul ts  in  la rge  oscil lations in the reflection 
coefficient as a function of the spacing between the two s t ruc tu res .  

The resu l t s  of this analysis show that the presence  of flaps at edges 
of the antenna aperture  can significantly reduce the oscillations in  the 
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reflection coefficient. Optimum flap lengths can a l so  be determined as  
those lengths which produce the greatest  reduction in the on-axis back- 
sca t t e r  f rom the ground-plane-mounted guide. 

Though only thin planar flaps a r e  used in this analysis,  extensions 
may  be easi ly  made to other  f lap geometries which may  yield lower 
backscat ter  and hence a m o r e  monotone response.  

One possible application of the resul ts  f rom this analysis would 
be in reducing r ada r  echo a r e a s  of s lot  a r r a y s .  
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APPENDIX I I 

The computation of the backscatter f rom the guide for plane wave 
incidence given in Section 11 was aided by the For t ran  IV computer 
program given below. The parameters  used in the program a r e  as 
shown in Fig.  19. The scat tered field contributions are:  ETD, the 
d i rec t  diffraction component; EG, the reflected geometrical  optics 
s t r ip  component; and ETP,  the reflected diffraction component. 
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Fig. 19. Backscatter f rom the guide with plane 
wave incidence. 
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1 0 0  C T E M P = C ~ , I P L X ( 3 . Y ~ - , . 5 ) * C ~ X ~  ( C , ~ ~ P L X ( ~ O ~ * - T P I * ~ O J * F )  1 

F F Q U (  I ) = A I M A G ( C T E M P )  

Y = - A / 2  LJ 

D O  1 5 0  I = l * N F  
R I = s Q R T ( D * D + ( Y - Y P ) * ( Y ' Y P ) )  
T E M P I = T P I * W l  
C A L L  H A N K E L  ( E E S L l  * Y N E L I l  * T E M P 1  ) 
C T E M P ~ = T P I * D / R ~ + C T ~ M P * C M ? L X ( ~ ~ S L ~ * - Y N ~ ~ ~ )  

F F Q R (  I ) = R t A L ( C T E M P l )  
F F Q U ( I ) = A I M A C ( C T E ~ P l )  
Y = Y + Y  I N C  

153 C O N T I N U E  
203 C O N T I N U E  

R E T U R N  
END 
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6 3  

70 

83 

I 



S U B R O U T I N E  V R  (RVBIUVHIRIANGIFN)  

D O U B L E  P R E C I L I O N  R A G I D P I T S I N  
P I = 3 . 1 4 1 5 9 2 6 5  
T P I = 6 * 2 8 3 1 U 5 3 0  
A N G = A N G * P I / l 8 C . C  
DEM=CMPLX(3.OtFN*SQRT(TPI 1 )  
T O P = C E X P  ( C M P L X  ( 0 .  C I - (  T P I  *R+P I /4.3 ) ) ) 

C 0 M = T O P  / D E  M 
N = I F I X ( ( P I + A N G ) / ( 2 . 3 s F N + P 1 ) + 0 . 5 )  

C O M P L E X  DEN I T O P  I C0i.l * E X P I U P P I  I UNP I 

D N = F L O A T  ( N )  

B O T L = S Q R T  ( T P I + R * A )  

C A L L  F R N E L S  ( C e S I i j O T L  ) 
C = S Q R T ( P I / 2 . 3 ) * ( 3 . 5 - C )  
S =  S Q H T ( P I / 2 . C ) * ( S - O . 5 )  
R A G = ( P I + A N G ) / ( 2 . ~ * F N )  

A = 1 . 3 + C O S ( 4 N G - 2 . O * F N * P I * ~ N )  

EXP=CEXP(CKPLX(S.S*TPI*R*A)) 

T S I N = D S I N ( R A G )  
T S = A d S ( S N G L ( T S I N ) )  
X = 1 0 . 0  
Y = 1 O / X * * 5  
I F ( T S . G T . Y )  GO T O  442 
C O M P = - S Q R T ( 2 . O ) * F N * S I N ( A N G / 2 . O - F N w P I + D N )  
l F ( C O S ( A N G / 2 . O - F N * P I * D N ) ~ L T ~ ~ e O )  COMP=-COMP 
G O  T O  443 

C O M P = S N C L  ( D P )  
UPP I = C O M * E X P * C O M P * C ~ P L X  ( C I  s 1 

D N = F L O A T  ( N  ) 

B O T L = S G R T ( T P I * R * A )  
E X P = C E X P  (CiViPLX (U. 3 1  T P I * R * A )  

442 DP=SQRT(A)*DCOS(RAG)/TSIN 

443 
N= I F  I X ( ( - P I  + L I N G ) / (  2 .b*FN*P I ) + 3 . 5 )  

A=l.O+COS(ANC-2.O*FN*PI*DN) 

C A L L  F R N E L S  ( C I S I B O T L )  
C = S Q R T ( P I / 2 . 0 ) * ( 3 . 5 - C )  
S =  S Q R T ( P 1 / 2 . 3 ) * ( S - n . 5 )  
R A G = ( P I - A N G ) / ( ~ . ~ * F N )  
T S  I ‘\]=OS I N  ( R A G  ) 
T S = A O S ( S N G L ( T S I N ) )  
I F ( T S 0 G T . Y )  GO TO 542 
C O M P =  S O R T ( 2 . 3 ) * F N * S I N ( A N G / 2 * ~ ~ - F N * P I * D N )  
IF(COS(ANG/~.O-FN*FI*DN)OLTOC.C) C 3 M P = - C 3 M P  
GO T O  1 2 3  

C O M P = S N G L  ( D P )  
UNP I =COM*EXP*COMP*CMPLX ( CI 5 ) 
A N G = 4 N G * 1 8 S  3 /P  I 
R V B = R E A L  ( U P P I + U N P I  1 
U V Y = A I M A G ( ~ J P P I + C I N P I  ) 

R E T U R N  
E N D  

542 D P = S Q R T ( A ) * D C O S ( R A C ) / T S I N  

1 2 3  
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C =  ( F R * c O S  ( X  )+F I *51 N ( X  )+3 ,QRT ( Y )  
S = ( F R * S I N ( X ) - F I * C O S ( X ) ) w S 3 R T ( Y )  
R E T U R N  

4c  Y=4 .Z /X  
50 K = K - 1  

F R = ( F R + C C ( K ) ) + Y  
F I = ( F  I +D ( K  ) ) * Y  
I F ( K - 2 )  6 2 , 6 3 9 5 3  

60 F R = F R + C C  ( 1 1 
F I = F I + D ( l )  
C=3*5+(FR*COS(X)+FI*bIN(X) ) * C i r i ? T ( Y )  
S = ~ O ~ + ( F R * ; I N ( X ) - F I * C ~ S ( X ) ) ~ ~ ~ ~ T ( Y )  
R E T U R N  

4 1 4  C=-3.0 
5=-3  . 2 
R E T U R N  
E N D  

I 
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APPENDIX I1 

The For t r an  IV computer program used in the computation of the 
reflection coefficient is as presented below. 

SEXELUTE PJFFT 
SPUFFT 4 L i  
C 
C 

9 

1 1  

1 r: 
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